Scientific Reports (Apr 2023)
Hydrodynamics of the fast-start caridoid escape response in Antarctic krill, Euphausia superba
Abstract
Abstract Krill are shrimp-like crustaceans with a high degree of mobility and variety of documented swimming behaviors. The caridoid escape response, a fast-start mechanism unique to crustaceans, occurs when the animal performs a series of rapid abdominal flexions and tail flipping that results in powerful backward strokes. The current results quantify the animal kinematics and three-dimensional flow field around a free-swimming Euphausia superba as it performs the caridoid escape maneuver. The specimen performs a single abdominal flexion-tail flip combination that leads to an acceleration over a 42 ms interval allowing it to reach a maximum speed of 57.0 cm/s (17.3 body lengths/s). The krill’s tail flipping during the abdominal closure is a significant contributor to the thrust generation during the maneuver. The krill sheds a complex chain of vortex rings in its wake due to the viscous flow effects while the organism accelerates. The vortex ring structure reveals a strong suction flow in the wake, which suggests that the pressure distribution and form drag play a role in the force balance for this maneuver. Antarctic krill typically swim in a low to intermediate Reynolds number (Re) regime where viscous forces are significant, but as shown by this analysis, its high maneuverability allows it to quickly change its body angle and swimming speed.