International Neurourology Journal (Oct 2018)

BubR1 Insufficiency Impairs Affective Behavior and Memory Function in Mice

  • Chang Hoon Cho,
  • Zhongxi Yang,
  • Ki Hyun Yoo,
  • Alfredo Oliveros,
  • Mi Hyeon Jang

DOI
https://doi.org/10.5213/inj.1836218.109
Journal volume & issue
Vol. 22, no. Suppl 3
pp. S122 – 130

Abstract

Read online

Purpose Although aging causes functional declines in cognition, the molecular mechanism underlying these declines remains largely unknown. Recently, the spindle checkpoint kinase budding uninhibited by benzimidazole-related 1 (BubR1) has emerged as a key determinant for age-related pathology in various tissues including brain. However, the neurobehavioral impact of BubR1 has not been explored. In this study, we investigated the role of BubR1 in behavioral function. Methods To investigate the neurobiological functions of BubR1 in vivo, we utilized transgenic mice harboring BubR1 hypomorphic alleles (BubR1H/H mice), which produce low amounts of BubR1 protein, as well as mice that have specific knockdown of BubR1 in the adult dentate gyrus. To assess anxiety-like behavior, the above groups were subjected to the elevated plus maze and the light-dark test, in addition to utilizing the tail-suspension and forced-swim test to determine depression-like behavior. We used novel object recognition to test for memory-related function. Results We found that BubR1H/H mice display several behavioral deficits when compared to wild-type littermates, including increased anxiety in the elevated-plus maze test, depression-like behavior in the tail suspension test, as well as impaired memory function in the novel object recognition test. Similar to BubR1H/H mice, knockdown of BubR1 within the adult dentate gyrus led to increased anxiety-like behavior as well as depression-like behavior, and impaired memory function. Conclusions Our study demonstrates a requirement of BubR1 in maintaining proper affective and memory-related behavioral function. These results suggest that a decline in BubR1 levels with advanced age may be a crucial contributor to age-related hippocampal dysfunction.

Keywords