Journal of Translational Medicine (Sep 2024)
The expansion of MDSCs induced by exosomal PD-L1 promotes the progression of gastric cancer
Abstract
Abstract Background Myeloid-derived suppressor cells (MDSCs) are the major factor in gastric cancer (GC) immune evasion. Nevertheless, the molecular process underlying the expansion of MDSCs induced by tumor-derived exosomes (TDEs) remains elusive. Methods The levels of exosomal and soluble PD-L1 in ninety GC patients were examined via enzyme-linked immunosorbent assay (ELISA) to determine their prognostic value. To investigate the correlation between exosomal PD-L1 and MDSCs, the percentage of MDSCs in the peripheral blood of 57 GC patients was assessed via flow cytometry. Through ultracentrifugation, the exosomes were separated from the GC cell supernatant and detected via Western blotting, nanoparticle tracking analysis (NTA), and transmission electron microscopy (TEM). The function of exosomal PD-L1 in MDSCs was evaluated via immunofluorescence, Western blotting and flow cytometry in a GC cell-derived xenograft (CDX) model. Results The overall survival (OS) of GC patients in the high exosomal PD-L1 group was significantly lower than that of patients in the low exosomal PD-L1 group (P = 0.0042); however, there was no significant correlation between soluble PD-L1 and OS in GC patients (P = 0.0501). Furthermore, we found that the expression of exosomal PD-L1 was positively correlated with the proportions of polymorphonuclear MDSCs (PMN-MDSCs, r = 0.4944, P < 0.001) and monocytic MDSCs (M-MDSCs, r = 0.3663, P = 0.005) in GC patients, indicating that exosomal PD-L1 might induce immune suppression by promoting the aggregation of MDSCs. In addition, we found that exosomal PD-L1 might stimulate MDSC proliferation by triggering the IL-6/STAT3 signaling pathway in vitro. The CDX model confirmed that exosomal PD-L1 could stimulate tumor development and MDSC amplification. Conclusions Exosomal PD-L1 has the potential to become a prognostic and diagnostic biomarker for GC patients. Mechanistically, MDSCs can be activated by exosomal PD-L1 through IL-6/STAT3 signaling and provide a new strategy against GC through the use of exosomal PD-L1 as a treatment target.
Keywords