Applied Sciences (Apr 2023)

Kinetic Photovoltaic Facade System Based on a Parametric Design for Application in Signal Box Buildings in Switzerland

  • Ho Soon Choi

DOI
https://doi.org/10.3390/app13074633
Journal volume & issue
Vol. 13, no. 7
p. 4633

Abstract

Read online

This study aims to produce renewable energy by applying a solar-energy-harvesting architectural design using solar panels on the facade of a building. To install as many solar panels as possible on the building elevation, the Signal Box auf dem Wolf, located in Basel, Switzerland, was selected as the research target. The solar panels to be installed on the facade of the Signal Box auf dem Wolf are planned such that they are able to move according to the optimal tilt angle every month to allow maximal energy generation. The kinetic photovoltaic facade system and the simulation of renewable energy generation were implemented using a parametric design. The novelty of this study is the development of a kinetic photovoltaic facade system using a parametric design algorithm. From the perspective of renewable energy in the field of architecture, the kinetic photovoltaic facade system developed in this study has the advantage of producing maximal renewable energy according to the optimal tilt angle of the solar panels. Additionally, building facades that move according to the optimal tilt angle will contribute to the expansion of the field of sustainable architectural design.

Keywords