Frontiers in Plant Science (Aug 2024)
Climate factors dominate the elevational variation in grassland plant resource utilization strategies
Abstract
Specific leaf area (SLA) and leaf dry matter content (LDMC) are key leaf functional traits often used to reflect plant resource utilization strategies and predict plant responses to environmental changes. In general, grassland plants at different elevations exhibit varying survival strategies. However, it remains unclear how grassland plants adapt to changes in elevation and their driving factors. To address this issue, we utilized SLA and LDMC data of grassland plants from 223 study sites at different elevations in China, along with climate and soil data, to investigate variations in resource utilization strategies of grassland plants along different elevational gradients and their dominant influencing factors employing linear mixed-effects models, variance partitioning method, piecewise Structural Equation Modeling, etc. The results show that with increasing elevation, SLA significantly decreases, and LDMC significantly increases (P < 0.001). This indicates different resource utilization strategies of grassland plants across elevation gradients, transitioning from a “faster investment-return” at lower elevations to a “slower investment-return” at higher elevations. Across different elevation gradients, climatic factors are the main factors affecting grassland plant resource utilization strategies, with soil nutrient factors also playing a non-negligible coordinating role. Among these, mean annual precipitation and hottest month mean temperature are key climatic factors influencing SLA of grassland plants, explaining 28.94% and 23.88% of SLA variation, respectively. The key factors affecting LDMC of grassland plants are mainly hottest month mean temperature and soil phosphorus content, with relative importance of 24.24% and 20.27%, respectively. Additionally, the direct effect of elevation on grassland plant resource utilization strategies is greater than its indirect effect (through influencing climatic and soil nutrient factors). These findings emphasize the substantive impact of elevation on grassland plant resource utilization strategies and have important ecological value for grassland management and protection under global change.
Keywords