Heliyon (Mar 2019)
Reporting cell planning-based cellular mobility management using a Binary Artificial Bat algorithm
Abstract
This paper attempts to present a novel application of Binary Artificial Bat algorithm for more effective location management in cellular networks. The location management is a mobility management task, which involves tracking of the mobile stations to locate their exact positions so that an incoming call or data can be routed to the intended mobile user. The location management cost comprises of the costs incurred by two processes, namely location registration and location search. This work focuses on network cost optimization, using Binary Artificial Bat algorithm for reporting cell planning strategy, which has not been reported yet. Results of the proposed algorithm have been compared with that of Binary Particle Swarm Optimization (BPSO) and Binary Differential Evolution (BDE) for some reference and realistic networks. The proposed approach is found to perform as good as other state-of-art techniques reported in the literature in terms of accuracy in solution, but it shows perceptible improvement in convergence speed.