Геодинамика и тектонофизика (Jun 2022)

THE METHOD FOR Cu AND Zn ISOTOPE RATIO DETERMINATION BY MC ICP-MS USING THE AG MP-1 RESIN

  • T. G. Okuneva,
  • S. V. Karpova,
  • M. V. Streletskaya,
  • N. G. Soloshenko,
  • D. V. Kiseleva

DOI
https://doi.org/10.5800/GT-2022-13-2s-0615
Journal volume & issue
Vol. 13, no. 2

Abstract

Read online

The isotopic composition of copper is of great interest for researchers in various fields of science, geochemistry and hydrology in particular, wherein the consideration is being given to the variations in the isotopic composition of the Earth’s crust, extraterrestrial matter, and water basins, as well as to the origin and transfer of matter. Zn isotopes appear to be promising for identifying the sources and pathways of the environmental pollution. The aim of this study involves the refinement and validation of the zinc and copper isotopic ratio determination methodology covering the whole process from sample digestion to MC ICP-MS measurements. For this reason, as well as to assess the suitability of the methodology for the analysis of environmental samples, Zn and Cu isotopic analysis of the BHVO-2, BCR-2 and AGV-2 USGS certified reference materials has been performed. The method for determination of Cu and Zn stable isotope ratios by multi-collector inductively coupled plasma mass spectrometry in environmental samples is developed. The application of the AG MP-1 resin with optimized layer parameters (resin bed height 3.5 cm, diameter 1 cm) provides the high-purity Cu and Zn fractions. The method is characterized by high throughput and adequate analytical figures of merit when using the standard-sample bracketing technique for mass bias correction. The procedural blanks related to chemical dissolution and ion exchange procedures are lower than 1 and 3 ng for Cu and Zn, respectively, assuring no blank effect on the isotopic composition of samples. The accuracy and precision obtained for Cu and Zn isotope measurements in the BHVO-2, BCR-2 and AGV-2 geological certified reference materials demonstrate good agreement with the reference values published.

Keywords