Geofluids (Jan 2021)

A Practical Solution Model for Transient Pressure Behavior of Multistage Fractured Horizontal Wells with Finite Conductivity in Tight Oil Reservoirs

  • Pin Jia,
  • Defeng Wu,
  • Hengfei Yin,
  • Zhuang Li,
  • Linsong Cheng,
  • Xianzhe Ke

DOI
https://doi.org/10.1155/2021/9948505
Journal volume & issue
Vol. 2021

Abstract

Read online

Fractured horizontal wells have been widely used to develop unconventional oil and gas reservoirs. In previous studies, most studies on the transient pressure behavior of multistage horizontal wells were based on the assumption of single porosity medium, in which the coupling relationship of natural fractures and artificial fractures was not taken into account or artificial fractures were assumed to be infinitely conductive. In this paper, the fracture is finite conductive, which means that there is flow resistance in the fracture. Based on point-source method and superposition principle, a transient model for multistage fractured horizontal wells, which considers the couple of fracture flow and reservoir seepage, is built and solved with the Laplace transformation. The transient pressure behavior in multistage fractured horizontal wells is discussed, and effects of influence factors are analyzed. The result of this article can be used to identify the response characteristic of fracture conductivity to pressure and pressure differential and provide theoretical basis for effective development of tight oil reservoirs. The findings of this study can help for better understanding of transient pressure behavior of multistage fractured horizontal wells with finite conductivity in tight oil reservoirs.