Annals of GIS (Apr 2024)
A case-based reasoning strategy of integrating case-level and covariate-level reasoning to automatically select covariates for spatial prediction
Abstract
ABSTRACTSpatial prediction is essential for obtaining the spatial distribution of geographic variables and selecting appropriate covariates for this process can be challenging, especially for non-expert users. For easing the burden of selecting the appropriate covariates, two case-based reasoning strategies, namely the most-similar-case and covariate-classification strategies, have been proposed for automated covariate selection. The former may suggest nonessential covariates due to its case-level reasoning way. And the latter with covariate-level reasoning may overlook related covariates and recommend fewer covariates than the case-level reasoning. In this study, we propose a new strategy of integrating case-level and covariate-level reasoning to effectively leverage the strengths of both previous strategies while also addressing their limitations. The proposed strategy is validated through a case study of automatically selecting covariates for digital soil mapping under reasoning with a case base containing 189 cases. The leave-one-out evaluation demonstrated that our proposed strategy outperformed the previous two strategies.
Keywords