Microbial Cell Factories (Oct 2024)
Recombinant production of Paenibacillus wynnii β-galactosidase with Komagataella phaffii
Abstract
Abstract Background The β-galactosidase from Paenibacillus wynnii (β-gal-Pw) is a promising candidate for lactose hydrolysis in milk and dairy products, as it has a higher affinity for the substrate lactose (low K M value) compared to industrially used β-galactosidases and is not inhibited by the hydrolysis-generated product D-galactose. However, β-gal-Pw must firstly be produced cost-effectively for any potential industrial application. Accordingly, the yeast Komagataella phaffii was chosen to investigate its feasibility to recombinantly produce β-gal-Pw since it is approved for the regulated production of food enzymes. The aim of this study was to find the most suitable way to produce the β-gal-Pw in K. phaffii either extracellularly or intracellularly. Results Firstly, 11 different signal peptides were tested for extracellular production of β-gal-Pw by K. phaffii under the control of the constitutive GAP promoter. None of the signal peptides resulted in a secretion of β-gal-Pw, indicating problems within the secretory pathway of this enzyme. Therefore, intracellular β-gal-Pw production was investigated using the GAP or methanol-inducible AOX1 promoter. A four-fold higher volumetric β-galactosidase activity of 7537 ± 66 µkat oNPGal/Lculture was achieved by the K. phaffii clone 27 using the AOX1 promoter in fed-batch bioreactor cultivations, compared to the clone 5 using the GAP promoter. However, a two-fold higher specific productivity of 3.14 ± 0.05 µkat oNPGal/gDCW/h was achieved when using the GAP promoter for β-gal-Pw production compared to the AOX1 promoter. After partial purification, a β-gal-Pw enzyme preparation with a total β-galactosidase activity of 3082 ± 98 µkat oNPGal was obtained from 1 L of recombinant K. phaffii culture (using AOX1 promoter). Conclusion This study showed that the β-gal-Pw was produced intracellularly by K. phaffii, but the secretion was not achieved with the signal peptides chosen. Nevertheless, a straightforward approach to improve the intracellular β-gal-Pw production with K. phaffii by using either the GAP or AOX1 promoter in bioreactor cultivations was demonstrated, offering insights into alternative production methods for this enzyme.
Keywords