Journal of Animal Science and Biotechnology (Dec 2024)

Quercetin mitigates iron-induced cell death in chicken granulosa cell

  • Shuo Wei,
  • Felix Kwame Amevor,
  • Xiaxia Du,
  • Linxiang Li,
  • Zhixin Yi,
  • Gang Shu,
  • Yan Wang,
  • Xiaoling Zhao

DOI
https://doi.org/10.1186/s40104-024-01118-0
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 21

Abstract

Read online

Abstract Background Granulosa cell (GC) apoptosis, ferroptosis, and other programmed cell death processes are markers of follicular aging. Quercetin has been shown to reduce ferroptosis, however, its effects on ferroptosis in poultry remains unexplored. Our preliminary study identified ferroptosis in aging ovaries. Therefore, in the present study, 540-day-old Mountain Plum-blossom chickens were fed with quercetin supplementation at varying doses (0.2, 0.4, and 0.6 g/kg), and examined its molecular effects on GC ferroptosis using an in vitro Erastin-induced model. Results The results showed that quercetin supplementation significantly increased egg production, which confirmed its potential to alleviate ferroptosis in chicken ovarian tissue. The in vitro experiment revealed that quercetin and Fer-1 (positive control) mitigated Erastin-induced ferroptosis in GCs. Further, transcriptome analysis revealed that quercetin modulated key genes such as acyl-CoA synthetase long-chain family member 4 (ACSL4), solute carrier family 7 member 11 (SLC7A11), and transferrin receptor (TFRC), involved in ferroptosis regulation. The results further showed that quercetin also reduced Erastin-induced apoptosis and inflammation by modulating the expression of genes and proteins related to apoptosis and inflammatory factors (NF-κB, TNF-α, IL-6, and IL-10). Conclusion Taken together, the results showed that quercetin improves egg production performance in chickens and mitigates ovarian ferroptosis in aging hens, and inhibits Erastin-induced ferroptosis, inflammation, and apoptosis in GCs. These findings revealed the protective role of quercetin in poultry ovarian tissue and its cellular mechanisms against detrimental factors in poultry production. Graphical Abstract

Keywords