Leida xuebao (Dec 2024)

An Identification Method of Polarization Modulation for Ship and Combined Corner Reflector Based on Civil Marine Radar

  • Di ZHU,
  • Fulai WANG,
  • Chen PANG,
  • Yongzhen LI

DOI
https://doi.org/10.12000/JR24184
Journal volume & issue
Vol. 13, no. 6
pp. 1252 – 1278

Abstract

Read online

Distinguishing between ships and corner reflectors is challenging in radar observations of the sea. Traditional identification methods, including high resolution range profiles, polarization decomposition, and polarization modulation, improve radial range resolution to the target by transmitting signals with a large bandwidth. The latter two methods use polarization to improve target identification. Single-carrier pulse signals, often used in civil marine radars owing to their low hardware cost, pose challenges in identifying ships and corner reflectors owing to their low range resolution and pulse compression gain. This article proposes a novel method for identifying ships and corner reflectors using polarization modulation in civil marine radars. This approach aims to fully exploit the target identification potential of the narrowband signal joint polarization modulation technology. Through constructing the polarization-range 2D images, the method differentiates between ships and corner reflectors through their unique polarization scattering characteristics. The process involves calculating the average Pearson correlation coefficient between each polarization image and the range image, which serves as the correlation feature parameter. A support vector machine is then employed to achieve accurate target identification. Electromagnetic simulations show that by increasing the device bandwidth to 2~6 times the original signal bandwidth (2 MHz), civil marine radar can achieve a comprehensive identification rate of 90.18%~92.31% at a Signal to Noise Ratio (SNR) of 15 dB and a sampling rate of 100 MHz. The study also explores the influence of missing 50% of pitch angle and azimuth angle data in the training set, finding that identification rates in all four cases exceed 85% when the SNR is above 15 dB. Comparisons with the polarization decomposition method under the same narrowband observation conditions show that when the SNR is 15 dB or higher and the device bandwidth is increased sixfold, the average identification rate of the proposed method improves by 22.67%. This strongly supports the effectiveness of the proposed method. In addition, two cases with different polarization scattering characteristics are constructed in the anechoic chamber using dihedral and trihedral setups. Five sets of measured data show that when the SNR of the echo is 8~12 dB, the experiments demonstrate strong intra-class aggregation and clear inter-class separability. These results effectively support the electromagnetic simulation findings.

Keywords