iScience (Jun 2024)

Enhancing tropical cyclone intensity forecasting with explainable deep learning integrating satellite observations and numerical model outputs

  • Juhyun Lee,
  • Jungho Im,
  • Yeji Shin

Journal volume & issue
Vol. 27, no. 6
p. 109905

Abstract

Read online

Summary: Tropical cyclone (TC) intensity change forecasting remains challenging due to the lack of understanding of the interactions between TC changes and environmental parameters, and the high uncertainties resulting from climate change. This study proposed hybrid convolutional neural networks (hybrid-CNN), which effectively combined satellite-based spatial characteristics and numerical prediction model outputs, to forecast TC intensity with lead times of 24, 48, and 72 h. The models were validated against best track data by TC category and phase and compared with the Korea Meteorological Administrator (KMA)-based TC forecasts. The hybrid-CNN-based forecasts outperformed KMA-based forecasts, exhibiting up to 22%, 110%, and 7% improvement in skill scores for the 24-, 48-, and 72-h forecasts, respectively. For rapid intensification cases, the models exhibited improvements of 62%, 87%, and 50% over KMA-based forecasts for the three lead times. Moreover, explainable deep learning demonstrated hybrid-CNN’s potential in predicting TC intensity and contributing to the TC forecasting field.

Keywords