The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (Oct 2017)
DETECTING FORESTS DAMAGED BY PINE WILT DISEASE AT THE INDIVIDUAL TREE LEVEL USING AIRBORNE LASER DATA AND WORLDVIEW-2/3 IMAGES OVER TWO SEASONS
Abstract
Pine wilt disease is caused by the pine wood nematode (Bursaphelenchus xylophilus) and Japanese pine sawyer (Monochamus alternatus). This study attempted to detect damaged pine trees at different levels using a combination of airborne laser scanning (ALS) data and high-resolution space-borne images. A canopy height model with a resolution of 50 cm derived from the ALS data was used for the delineation of tree crowns using the Individual Tree Detection method. Two pan-sharpened images were established using the ortho-rectified images. Next, we analyzed two kinds of intensity-hue-saturation (IHS) images and 18 remote sensing indices (RSI) derived from the pan-sharpened images. The mean and standard deviation of the 2 IHS images, 18 RSI, and 8 bands of the WV-2 and WV-3 images were extracted for each tree crown and were used to classify tree crowns using a support vector machine classifier. Individual tree crowns were assigned to one of nine classes: bare ground, Larix kaempferi, Cryptomeria japonica, Chamaecyparis obtusa, broadleaved trees, healthy pines, and damaged pines at slight, moderate, and heavy levels. The accuracy of the classifications using the WV-2 images ranged from 76.5 to 99.6 %, with an overall accuracy of 98.5 %. However, the accuracy of the classifications using the WV-3 images ranged from 40.4 to 95.4 %, with an overall accuracy of 72 %, which suggests poorer accuracy compared to those classes derived from the WV-2 images. This is because the WV-3 images were acquired in October 2016 from an area with low sun, at a low altitude.