International Journal of Renewable Energy Development (Sep 2023)

Enhancing transient stability and dynamic response of wind-penetrated power systems through PSS and STATCOM cooperation

  • Khaled Kouider,
  • Abdelkader Bekri

DOI
https://doi.org/10.14710/ijred.2023.53249
Journal volume & issue
Vol. 12, no. 5
pp. 816 – 831

Abstract

Read online

The large-scale integration of doubly-fed induction generator (DFIG) based wind power plants poses stability challenges for power system operation. This study investigates the transient stability and dynamic performance of a modified 3-machine, 9-bus Western System Coordinating Council (WSCC) system. The investigation was conducted by connecting the DFIG wind farm to the sixth bus via a low-impedance transmission line and installing power system stabilizers (PSSs) on all automatic voltage regulators (AVRs). A three-phase fault simulation was carried out to test the system, with and without power system stabilizers and a static synchronous compensator (STATCOM) device. Time-domain simulations demonstrate improved transient response with PSS-STATCOM control. A 50% reduction in settling time and 70% decrease in power angle undershoots at the slack bus are achieved following disturbances, even at minimum wind penetration levels. Load flow analysis shows the coordinated controllers maintain voltages within 0.5% of nominal at 60% wind penetration, while voltages at load buses can deviate up to 15% without control. Eigenvalue analysis indicates the PSS-STATCOM boosts damping ratios of critical oscillatory modes from nearly 0% to over 30% under high wind injection. Together, the present findings provide significant evidence that PSS and STATCOM cooperation enhances dynamic voltage regulation, angle stability, and damping across operating ranges, thereby maintaining secure operation in systems with high renewable integration.

Keywords