International Journal of Nanomedicine (Jul 2021)
Carbon Dots: A Future Blood–Brain Barrier Penetrating Nanomedicine and Drug Nanocarrier
Abstract
Wei Zhang,1,* Ganesh Sigdel,1,* Keenan J Mintz,1 Elif S Seven,1 Yiqun Zhou,1 Chunyu Wang,2,3 Roger M Leblanc1 1Department of Chemistry, University of Miami, Coral Gables, FL, 33146, USA; 2Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; 3Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA*These authors contributed equally to this workCorrespondence: Roger M Leblanc Email [email protected]: Drug delivery across the blood–brain barrier (BBB) is one of the biggest challenges in modern medicine due to the BBB’s highly semipermeable property that limits most therapeutic agents of brain diseases to enter the central nervous system (CNS). In recent years, nanoparticles, especially carbon dots (CDs), exhibit many unprecedented applications for drug delivery. Several types of CDs and CD-ligand conjugates have been reported successfully penetrating the BBB, which shows a promising progress in the application of CD-based drug delivery system (DDS) for the treatment of CNS diseases. In this review, our discussion of CDs includes their classification, preparations, structures, properties, and applications for the treatment of neurodegenerative diseases, especially Alzheimer’s disease (AD) and brain tumor. Moreover, abundant functional groups on the surface, especially amine and carboxyl groups, allow CDs to conjugate with diverse drugs as versatile drug nanocarriers. In addition, structure of the BBB is briefly described, and mechanisms for transporting various molecules across the BBB and other biological barriers are elucidated. Most importantly, recent developments in drug delivery with CDs as BBB-penetrating nanodrugs and drug nanocarriers to target CNS diseases especially Alzheimer’s disease and brain tumor are summarized. Eventually, future prospects of the CD-based DDS are discussed in combination with the development of artificial intelligence and nanorobots.Keywords: carbon dots, blood–brain barrier, drug delivery, brain tumor, central nervous system diseases