Journal of Oral Research (Oct 2015)
Vickers microhardness comparison of 4 composite resins with different types of filler.
Abstract
Composite resins are the material of choice to restore minimal invasive cavities; conversely, it is important to explore the mechanical properties of commercially available dental materials. Objective: To compare the Vickers microhardness (VHN) of four available commercial composite resins using standardized samples and methods. Methodology: Composite cylinders were manufactured in a Teflon mould. We used the follow composite resins (n=4/gp): Microhybrid resins [Feeling Lux (Viarden) and Amelogen Plus (Ultradent)], Hybrid resin [Te-Econom Plus (Ivoclar)] and Nanohybrid resin [Filtek Z350 (3M ESPE)]. All samples were incubated in distilled water at 37ºC for five days. The test was carried out with microhardness indenter at 10 N, and a dwelling time of 10 s for 9 indentations across the specimens resulting in a total of 36 indentations for each group. Data were subjected to Kolmogorov-Smirnov normality test and ANOVA (post-hoc) Tukey test. Results: The VHN mean values ranged from harder to softer as follows: Filtek Z350 (71.96±6.44) (p Amelogen Plus (59.90±4.40) (p Feeling lux (53.52±5.72)> Te-Econom Plus (53.26±5.19). Conclusion: According to our results, the microhardness of the evaluated conventional composite resins can withstand the masticatory forces; however nanohybrid composite resins showed better Vickers microhardness and therefore are a more clinically suitable option for minimal invasion treatments.
Keywords