Molecules (Jul 2022)
Quantitative Analysis and Differential Evaluation of Radix Bupleuri Cultivated in Different Regions Based on HPLC-MS and GC-MS Combined with Multivariate Statistical Analysis
Abstract
The quality of Radix Bupleuri is greatly affected by its growing environment. In this study, Radix Bupleuri samples that were harvested from seven different regions across northwest China were examined by high-performance liquid chromatography (HPLC) and gas chromatography (GC) coupled with mass spectrometry (MS) to reveal significant differences in quality contributed by the cultivation region. An HPLC-MS method was firstly established and used in the multiple reaction monitoring mode for the quantitative analysis of five saikosaponins in Radix Bupleuri so as to evaluate the difference in the absolute content of saikosaponins attributable to the cultivation region. The effect on the components of Radix Bupleuri was further investigated based on the profiles of the representative saponins and volatile compounds, which were extracted from the Radix Bupleuri samples and analyzed by HPLC-MS and GC-MS. Multivariate statistical analysis was employed to differentiate the Radix Bupleuri samples cultivated in different regions and to discover the differential compositions. The developed quantitative method was validated to be accurate, stable, sensitive, and repeatable for the determination of five saikosaponins. Further statistical tests revealed that the collected Radix Bupleuri samples were distinctly different from each other in terms of both saponins and volatile compounds, based on the provinces where they were grown. In addition, twenty-eight saponins and fifty-eight volatile compounds were identified as the differentially accumulated compositions that contributed to the discrimination of the Radix Bupleuri samples. The Radix Bupleuri samples grown in Shouyang county showed the highest content of saikosaponins. All of the results indicated that the cultivation region significantly affected the accumulation and diversity of the main chemical components of Radix Bupleuri. The findings of this research provide insights into the effect of the cultivation region on the quality of Radix Bupleuri and the differentiation of Radix Bupleuri cultivated in different regions based on the use of HPLC-MS and GC-MS combined with multivariate statistical analysis.
Keywords