Applied Sciences (Dec 2020)
Reducing Motion Blur in Ghost Imaging Via the Hessian Matrix
Abstract
Different from conventional imaging, ghost imaging (GI) is an indirect modality of imaging that needs multiple measurements of the second-order correlation of data collected from two detectors. In some particular cases, the exposure time of two detectors or the rotation speed of the ground glass may not meet the need of experimental condition, resulting in motion blur that reduces the quality of the reconstructed image. In this paper, we propose a method to solve this problem. By convolving the data from the reference arm with the Hessian matrix, the intensity of the light in the data is replaced by the gradient of intensity and the influence of the motion blur in the reconstructed image can be reduced.
Keywords