Journal of Experimental & Clinical Cancer Research (Aug 2018)
Anti-inflammatory signaling by mammary tumor cells mediates prometastatic macrophage polarization in an innovative intraductal mouse model for triple-negative breast cancer
Abstract
Abstract Background Murine breast cancer models relying on intraductal tumor cell inoculations are attractive because they allow the study of breast cancer from early ductal carcinoma in situ to metastasis. Using a fully immunocompetent 4T1-based intraductal model for triple-negative breast cancer (TNBC) we aimed to investigate the immunological responses that guide such intraductal tumor progression, focusing on the prominent role of macrophages. Methods Intraductal inoculations were performed in lactating female mice with luciferase-expressing 4T1 mammary tumor cells either with or without additional RAW264.7 macrophages, mimicking basal versus increased macrophage-tumor cell interactions in the ductal environment. Imaging of 4T1-derived luminescence was used to monitor primary tumor growth and metastases. Tumor proliferation, hypoxia, disruption of the ductal architecture and tumor immune populations were determined immunohistochemically. M1- (pro-inflammatory) and M2-related (anti-inflammatory) cytokine levels were determined by Luminex assays and ELISA to investigate the activation state of the macrophage inoculum. Levels of the metastatic proteins matrix metalloproteinase 9 (MMP-9) and vascular endothelial growth factor (VEGF) as well as of the immune-related disease biomarkers chitinase 3-like 1 (CHI3L1) and lipocalin 2 (LCN2) were measured by ELISA to evaluate disease progression at the protein level. Results Mice intraductally co-injected with macrophages showed severe splenomegaly with faster ductal breakthrough of tumor cells and increased metastases in axillary lymph nodes and lungs. These mice showed higher M1-related cytokines in the early disease stages (at 1 to 3 weeks post-inoculation) due to the pro-inflammatory nature of RAW264.7 macrophages with increased Ly6G-positive neutrophils and decreased anti-inflammatory macrophages in the tumor microenvironment. However, upon metastasis (at 5 weeks post-inoculation), a prominent increase in M2-related cytokine levels was detected and established a tumor microenvironment with similar immune populations and cytokine responses as in mice which received only 4T1 tumor cells. The observed tumor-associated immune responses and the increased metastasis were associated with significantly induced local and systemic levels of MMP-9, VEGF, CHI3L1 and LCN2. Conclusions The current experimental study with an innovative immunocompetent intraductal model for TNBC pinpoints towards a metastasis-supporting M1 to M2 macrophage polarization in the mammary ducts mediated by 4T1-derived signaling. We propose to explore this process as immunotherapeutic target.
Keywords