Symmetry (Jan 2023)
A Genetic Algorithm for the Waitable Time-Varying Multi-Depot Green Vehicle Routing Problem
Abstract
In an era where people in the world are concerned about environmental issues, companies must reduce distribution costs while minimizing the pollution generated during the distribution process. For today’s multi-depot problem, a mixed-integer programming model is proposed in this paper to minimize all costs incurred in the entire transportation process, considering the impact of time-varying speed, loading, and waiting time on costs. Time is directional; hence, the problems considered in this study are modeled based on asymmetry, making the problem-solving more complex. This paper proposes a genetic algorithm combined with simulated annealing to solve this issue, with the inner and outer layers solving for the optimal waiting time and path planning problem, respectively. The mutation operator is replaced in the outer layer by a neighbor search approach using a solution acceptance mechanism similar to simulated annealing to avoid a local optimum solution. This study extends the path distribution problem (vehicle-routing problem) and provides an alternative approach for solving time-varying networks.
Keywords