IEEE Access (Jan 2020)
Modeling and Performance Analysis of an Axial-Radial Combined Permanent Magnet Eddy Current Coupler
Abstract
The structure and magnetic circuits of axial-radial combined permanent magnet eddy current couplers are more complicated than those of axial or radial permanent magnet eddy current couplers, the degree of coupling is deeper, which will affect the device performance. In this paper, a novel analytical model for an axial-radial combined permanent magnet eddy current coupler is proposed based on the equivalent magnetic circuit method. The distribution of the magnetic field, the relationship between the slip and torque, the influence of the structural parameters on the transmission performance, the 3-D correction and thermal compensation are studied. Combined with the concept of the micro-element method, the air gap magnetic density, eddy current density and torque are accurately calculated, which solves the problem that the existing model cannot analyse the axial-radial combined structure. To show the effectiveness of the proposed analytical model, the transmission performance of an axial-radial combined permanent magnet eddy current coupler prototype is investigated, and the analytical calculation results are compared with the results of the finite element method simulations and experimental tests.
Keywords