C (Jul 2023)
Recent Advancements in Applications of Graphene to Attain Next-Level Solar Cells
Abstract
This paper presents an intensive review covering all the versatile applications of graphene and its derivatives in solar photovoltaic technology. To understand the internal working mechanism for the attainment of highly efficient graphene-based solar cells, graphene’s parameters of control, namely its number of layers and doping concentration are thoroughly discussed. The popular graphene synthesis techniques are studied. A detailed review of various possible applications of utilizing graphene’s attractive properties in solar cell technology is conducted. This paper clearly mentions its applications as an efficient transparent conducting electrode, photoactive layer and Schottky junction formation. The paper also covers advancements in the 10 different types of solar cell technologies caused by the incorporation of graphene and its derivatives in solar cell architecture. Graphene-based solar cells are observed to outperform those solar cells with the same configuration but lacking the presence of graphene in them. Various roles that graphene efficiently performs in the individual type of solar cell technology are also explored. Moreover, bi-layer (and sometimes, tri-layer) graphene is shown to have the potential to fairly uplift the solar cell performance appreciably as well as impart maximum stability to solar cells as compared to multi-layered graphene. The current challenges concerning graphene-based solar cells along with the various strategies adopted to resolve the issues are also mentioned. Hence, graphene and its derivatives are demonstrated to provide a viable path towards light-weight, flexible, cost-friendly, eco-friendly, stable and highly efficient solar cell technology.
Keywords