智能科学与技术学报 (Sep 2020)
CFNN-based online control for dissolved oxygen concentration of wastewater treatment processes
Abstract
Due to the frequent disturbance in flow and load,as well as the large uncertainty in the wastewater treatment processes,it is difficult to control the dissolved oxygen accurately and in real-time.To improve the accuracy and robustness of the controller,an online control method of dissolved oxygen concentration using the correntropy based fuzzy neural network (CFNN) was proposed.First,the performance index was established based on the correntropy of tracking errors to suppress large outliers in the process.Then,the parameters of controller were updated by the online gradient descent algorithm.Moreover,the stability of the control system was analyzed.Finally,the experiments were carried out based on the Benchmark Simulation Model No.1 (BSM1).The results prove that the CFNN controller performs better than the mean square error based neural network controller in accuracy and model stability.