Energies (Oct 2023)

Experimental Studies on Preheating Combustion Characteristics of Low-Rank Coal with Different Particle Sizes and Kinetic Simulation of Nitrogen Oxide

  • Jiahang Zhang,
  • Jianguo Zhu,
  • Jingzhang Liu

DOI
https://doi.org/10.3390/en16207078
Journal volume & issue
Vol. 16, no. 20
p. 7078

Abstract

Read online

Low-rank coal, accounting for 45% of the global coal reserves, is easier to use in terms of realizing ignition and stable combustion due to its relatively high levels of volatile content. But the problem of low-rank coal combustion is that its NO formation is in the range of 300–600 mg/m3, which makes the emission’s meeting of the environmental regulation quite difficult or uneconomic. Preheating combustion was a prospective combustion technology which involved preheating in a circulating fluidized bed (CFB) first and then combustion in a combustor for preheated fuel. With three particle sizes (0–0.355 mm, 0–0.5 mm, and 0–1 mm), some experiments were carried out in a 30 kW test rig. The results showed that, in the CFB preheating, a particle size of 0–1 mm had the highest coal-gas heating value due to a long residence time. The release of species in the CFB preheating always followed the order H > N > C > S. For preheated fuel combustion, a particle size of 0–0.355 mm showed the fastest combustion velocity, with the highest temperature point near the nozzle. For all three particle sizes, the combustion of preheated fuel showed a uniform temperature distribution with a small temperature difference. The lowest NO emission was 105 mg/m3 for the particle size of 0–0.5 mm. A GRI-Mech 2.11 mechanism was used to simulate the formation of NO with different influencing factors, such as temperature, oxygen concentration, and secondary-air ratio. There was a good agreement between the experimental data and the simulation’s results. The simulation showed that the NO formation could be further decreased with an optimal secondary-air ratio. This investigation provides support for the basic understanding of preheating-combustion technology and potential industrial applications in the future.

Keywords