Journal of Cloud Computing: Advances, Systems and Applications (Jan 2019)
Energy-aware VM placement algorithms for the OpenStack Neat consolidation framework
Abstract
Abstract One of the main challenges in cloud computing is an enormous amount of energy consumed in data-centers. Several researches have been conducted on Virtual Machine(VM) consolidation to optimize energy consumption. Among the proposed VM consolidations, OpenStack Neat is notable for its practicality. OpenStack Neat is an open-source consolidation framework that can seamlessly integrate to OpenStack, one of the most common and widely used open-source cloud management tool. The framework has components for deciding when to migrate VMs and for selecting suitable hosts for the VMs (VM placement). The VM placement algorithm of OpenStack Neat is called Modified Best-Fit Decreasing (MBFD). MBFD is based on a heuristic that handles only minimizing the number of servers. The heuristic is not only less energy efficient but also increases Service Level Agreement (SLA) violation and consequently cause more VM migrations. To improve the energy efficiency, we propose VM placement algorithms based on both bin-packing heuristics and servers’ power efficiency. In addition, we introduce a new bin-packing heuristic called a Medium-Fit (MF) to reduce SLA violation. To evaluate performance of the proposed algorithms we have conducted experiments using CloudSim on three cloud data-center scenarios: homogeneous, heterogeneous and default. Workloads that run in the data-centers are generated from traces of PlanetLab and Bitbrains clouds. The results of the experiment show up-to 67% improvement in energy consumption and up-to 78% and 46% reduction in SLA violation and amount of VM migrations, respectively. Moreover, all improvements are statistically significant with significance level of 0.01.
Keywords