NeoBiota (May 2022)
Threats at home? Assessing the potential ecological impacts and risks of commonly traded pet fishes
Abstract
Read online Read online Read online
Invasive alien species (IAS) are major drivers of global biodiversity loss, and the poorly regulated international pet trade is a source of emerging and future invaders. Predictions of the likely ecological impacts and risks of such IAS have been significantly enhanced in recent years with new metrics, which require application to many more actual and potential IAS. Hence, this study assesses the potential ecological impacts and risks of two readily available pet trade species: goldfish, Carassius auratus, a species with non-native populations worldwide; and white cloud mountain minnow, Tanichthys albonubes, a species with a limited invasion history to date. First, we compared the per capita feeding rates of these non-native species with two European trophically analogous natives – the stone loach, Barbatula barbatula, and the common minnow, Phoxinus phoxinus – using the Comparative Functional Response method. Second, we used foraging experiments in conspecific pairs to determine synergistic, neutral or antagonistic intraspecific interactions. Third, we performed novel object experiments using the two pet trade species to assess boldness, a known “dispersal enhancing trait”. Goldfish had the highest maximum feeding rates of the four species, while white cloud mountain minnows had the lowest. Neutral interactions were observed for all four species in the paired foraging experiments, with goldfish having the highest consumption and white cloud mountain minnows having the lowest. Goldfish demonstrated greater boldness, being more active during the experimental trials and more likely to approach a novel object than white cloud mountain minnows. Further, combining maximum feeding rates, boldness and species availabilities from our survey of pet shops, we assessed the relative invasion risks (RIR) of the two non-natives. This highlighted goldfish as the higher risk and most worthy of management prioritisation, mirroring its more extensive invasion history. We propose that such metrics have potential to direct future IAS policy decisions and management towards the ever-increasing rates of biological invasions worldwide.