Universe (Feb 2022)

Responses of Mesosphere and Lower Thermosphere Temperature to the Geomagnetic Storm on 7–8 September 2017

  • Meng Sun,
  • Zheng Li,
  • Jingyuan Li,
  • Jianyong Lu,
  • Chunli Gu,
  • Mengbin Zhu,
  • Yufeng Tian

DOI
https://doi.org/10.3390/universe8020096
Journal volume & issue
Vol. 8, no. 2
p. 96

Abstract

Read online

The variations of neutral temperature in the mesosphere and lower thermosphere (MLT) region, during the 7–8 September 2017 intense geomagnetic storm, are studied using observations by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument onboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite. They are also studied using simulations by the Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIMEGCM). The neutral temperature data cover the altitudes from 80 km to 110 km between 83° N and 52° S latitude, obtained from both SABER observations and model simulations. The SABER observations reveal that temperature increases (the maximum increase is larger than 35 K at ~108 km) and decreases (the maximum decrease is larger than 20 K at ~105 km) during the geomagnetic storm. The storm effects penetrate down to ~80 km. In observations, temperature variations corresponding to the storm show hemispheric asymmetry. That is, the variations of temperature are more prominent in the northern hemisphere than in the southern hemisphere. Conversely, the TIMEGCM outputs agree with the observations in general but overestimate the temperature increases and underestimate the temperature decreases at high and middle latitudes. Meanwhile, the simulations show stronger temperature decreases and weaker temperature increases than observations at low latitudes. After analyzing the temperature variations, we suggest that vertical winds may play an important role in inducing these significant variations of temperature in the MLT region.

Keywords