International Journal of Advanced Design and Manufacturing Technology (Sep 2019)
Investigating the Effect of Cutting Condition on the Plastic Energy in Turning Process of AISI 1050
Abstract
Reducing energy consumption is a demanding issue considering the limited available energy resources and increasing environmental pollution. On the other hand, industry consumes a huge amount of energy, and manufacturing processes are the most energy consuming portions of the industry. Machining issues including cutting tool geometry and process parameters affect the cutting forces and also production consuming energy. By increasing cutting forces, the tool life would be reduced and therewith cost of machining process increases. In this work, the effect of machining condition on cutting force and energy consumption studied in turning process during validated FE analysis using ALE method. So, the effect of rake angle, tool edge radius and cutting speed was investigated on the cutting force, plastic strain and plastic consuming energy. Results proved that these parameters are effective on plastic energy consumption in turning process among them cutting speed has more effect on the plastic energy. By increasing the cutting speed, the plastic energy decreases considerably. Rake angle is also effective on process energy consumption and the combination of increasing the rake angle and cutting speed, and choosing the optimal edge radius leads to the minimized plastic energy.