Photonics (Jun 2024)
A Critical Analysis of the Thermo-Optic Time Constant in Si Photonic Devices
Abstract
The use of integrated heaters is widespread in silicon photonics for waveguide temperature control. The dynamical behavior of the heaters is important for determining their usefulness for certain applications. There exists ambiguity in the literature when it comes to reporting the thermo-optic time constants of Si photonic devices. Many studies report devices with different heating and cooling times without providing an explanation to this phenomenon. In this paper, a comprehensive theoretical framework is developed for interpreting experimental results. This framework is developed for interferometric devices (Mach–Zehnder-based) and resonant devices (rings). With this framework, the impact of measurement conditions on the obtained thermo-optic time constant can be simulated, and we provide an explanation to the observed difference between heating and cooling time constants. We also provide guidelines on how to disentangle optical non-linearities from the pure thermal response, which should be useful in for future reporting of thermo-optic time constants.
Keywords