Cell Reports (May 2022)

Structures of Omicron spike complexes and implications for neutralizing antibody development

  • Hangtian Guo,
  • Yan Gao,
  • Tinghan Li,
  • Tingting Li,
  • Yuchi Lu,
  • Le Zheng,
  • Yue Liu,
  • Tingting Yang,
  • Feiyang Luo,
  • Shuyi Song,
  • Wei Wang,
  • Xiuna Yang,
  • Henry C. Nguyen,
  • Hongkai Zhang,
  • Ailong Huang,
  • Aishun Jin,
  • Haitao Yang,
  • Zihe Rao,
  • Xiaoyun Ji

Journal volume & issue
Vol. 39, no. 5
p. 110770

Abstract

Read online

Summary: The emergence of the SARS-CoV-2 Omicron variant is dominant in many countries worldwide. The high number of spike mutations is responsible for the broad immune evasion from existing vaccines and antibody drugs. To understand this, we first present the cryo-electron microscopy structure of ACE2-bound SARS-CoV-2 Omicron spike. Comparison to previous spike antibody structures explains how Omicron escapes these therapeutics. Secondly, we report structures of Omicron, Delta, and wild-type spikes bound to a patient-derived Fab antibody fragment (510A5), which provides direct evidence where antibody binding is greatly attenuated by the Omicron mutations, freeing spike to bind ACE2. Together with biochemical binding and 510A5 neutralization assays, our work establishes principles of binding required for neutralization and clearly illustrates how the mutations lead to antibody evasion yet retain strong ACE2 interactions. Structural information on spike with both bound and unbound antibodies collectively elucidates potential strategies for generation of therapeutic antibodies.

Keywords