工程科学学报 (Aug 2016)

Effect of cooling rate on the microstructure and corrosion properties of Zn-5Al-0.1RE-xSi alloys

  • TU Hao,
  • WEI Da-sheng,
  • ZHOU Sheng-jie,
  • LIU Ya,
  • WU Zhang-jun,
  • SU Xu-ping,
  • WANG Jian-hua

DOI
https://doi.org/10.13374/j.issn2095-9389.2016.08.012
Journal volume & issue
Vol. 38, no. 8
pp. 1132 – 1138

Abstract

Read online

The effects of cooling rate and Si on the microstructure and corrosion property of the Zn-5Al-0.1 RE alloy were studied by scanning electron microscopy-energy dispersive spectrometry, X-ray diffraction, neutral salt spray test and polarization curves. The results show that Zn-5Al-0.1RE-xSi alloys are composed of primary η-Zn phase and η-Zn + α-Al eutectic structure, and the former is uniformly distributed on the adjacent η-Zn + α-Al entectic cells. The reduction of cooling rate and the addition of Si make the grain size increase and the boundary area per unit alloy area decrease; at the same time, the corrosion resistance is improved. The corrosion resistance of the Zn-5Al-0.1 RE-xSi alloys is dependent on their solidification structure and the relative amount of corrosion products including Zn5(OH)8Cl2·H20 and ZnO.

Keywords