Journal of Taibah University for Science (Mar 2018)

Prediction of the abrasive wear behaviour of heat-treated aluminium-clay composites using an artificial neural network

  • Ademola Abiona Agbeleye,
  • David E. Esezobor,
  • Johnson O. Agunsoye,
  • Sanmbo A. Balogun,
  • Adeyanju A. Sosimi

DOI
https://doi.org/10.1080/16583655.2018.1451119
Journal volume & issue
Vol. 12, no. 2
pp. 235 – 240

Abstract

Read online

This work employs the T6 heat treatment process to aluminium-clay (Al-Clay) composite consisting of 15 wt% clay. The samples were solutionized at 500°C, 550°C and 600°C, and were quenched in air, oil and water. Selected samples of the heat-treated composite were subjected to wear tests using Denison T62 HS pin-on-disc wear-testing machine in accordance with ASTM: G99-05 standard. The effects of two different loads (4 and 10 N) and three sliding speeds (200, 500 and 1000 rpm) under dry sliding conditions were investigated. The potential of using back-propagation neural network with 4-10-1 architecture was explored to predict the wear rate of the heat-treated composites. The results show that the performance of Levenberg–Marquardt training algorithm is superior to all other algorithms used. The well-trained ANN system satisfactorily predicted the experimental results and can be handy for an optimum design and also an alternative technique to evaluate wear rate.

Keywords