Frontiers in Bioengineering and Biotechnology (Jun 2022)

Characterizing and Improving pET Vectors for Cell-free Expression

  • Kara Jew,
  • Philip E. J. Smith,
  • Byungcheol So,
  • Jillian Kasman,
  • Javin P. Oza,
  • Michael W. Black

DOI
https://doi.org/10.3389/fbioe.2022.895069
Journal volume & issue
Vol. 10

Abstract

Read online

Cell-free protein synthesis (CFPS) is an in vitro process that enables diverse applications in research, biomanufacturing, point-of-care diagnostics, therapeutics, and education using minimal laboratory equipment and reagents. One of the major limitations of CFPS implementation is its sensitivity to plasmid type. Specifically, plasmid templates based on commonly used vector backbones such as the pET series of bacterial expression vectors result in the inferior production of proteins. To overcome this limitation, we have evaluated the effect of expression cassette elements present in the pET30 vector on protein production across three different CFPS systems: NEBExpress, PURExpress, and CFAI-based E. coli extracts. Through the systematic elimination of genetic elements within the pET30 vector, we have identified elements that are responsible for the poor performance of pET30 vectors in the various CFPS systems. As a result, we demonstrate that through the removal of the lac operator (lacO) and N-terminal tags included in the vector backbone sequence, a pET vector can support high titers of protein expression when using extract-based CFPS systems. This work provides two key advances for the research community: 1) identification of vector sequence elements that affect robust production of proteins; 2) evaluation of expression across three unique CFPS systems including CFAI extracts, NEBexpress, and PURExpress. We anticipate that this work will improve access to CFPS by enabling researchers to choose the correct expression backbone within the context of their preferred expression system.

Keywords