Journal of Fungi (Dec 2022)

MoSnf5 Regulates Fungal Virulence, Growth, and Conidiation in <i>Magnaporthe oryzae</i>

  • Xiao-Wen Xu,
  • Rui Zhao,
  • Xiao-Zhou Xu,
  • Liu Tang,
  • Wei Shi,
  • Deng Chen,
  • Jun-Bo Peng,
  • Vijai Bhadauria,
  • Wen-Sheng Zhao,
  • Jun Yang,
  • You-Liang Peng

DOI
https://doi.org/10.3390/jof9010018
Journal volume & issue
Vol. 9, no. 1
p. 18

Abstract

Read online

Snf5 (sucrose nonfermenting) is a core component of the SWI/SNF complexes and regulates diverse cellular processes in model eukaryotes. In plant pathogenic fungi, its biological function and underlying mechanisms remain unexplored. In this study, we investigated the biological roles of MoSnf5 in plant infection and fungal development in the rice blast pathogen Magnaporthe oryzae. The gene deletion mutants of MoSNF5 exhibited slower vegetative hyphal growth, severe defects in conidiogenesis, and impaired virulence and galactose utilization capacities. Domain dissection assays showed that the Snf5 domain and the N- and C-termini of MoSnf5 were all required for its full functions. Co-immunoprecipitation and yeast two-hybrid assays showed that MoSnf5 physically interacts with four proteins, including a transcription initiation factor MoTaf14. Interestingly, the ∆MoTaf14 mutants showed similar phenotypes as the ∆Mosnf5 mutants on fungal virulence and development. Moreover, assays on GFP-MoAtg8 expression and localization showed that both the ∆Mosnf5 and ∆MoTaf14 mutants were defective in autophagy. Taken together, MoSnf5 regulates fungal virulence, growth, and conidiation, possibly through regulating galactose utilization and autophagy in M. oryzae.

Keywords