Harm Reduction Journal (Feb 2019)
The effects of heat and freeze-thaw cycling on naloxone stability
Abstract
Abstract Purpose The availability of take home naloxone (THN) was increased for Canadians in 2016, including access to kits via pharmacies. Unlike typical over-the-counter (OTC) and prescription drugs, THN kits may be stored in non-standard conditions, including in vehicles, backpacks, and out of doors. To evaluate whether these non-standard storage conditions affect stability, we investigated the impact of heat and freeze-thaw cycling on naloxone hydrochloride stability. Methods To assess the effect of heat, naloxone hydrochloride ampoules were exposed to 80 °C in a temperature-controlled oven for 8 h followed by 16 h at room temperature. To assess the effect of freeze-thaw cycles, naloxone hydrochloride ampoules were exposed to − 20 °C for 16 h followed by 8 h at 4 °C. The impact of these conditions on naloxone hydrochloride stability was evaluated each day for 1 week and after 2 and 4 weeks. The concentration of remaining naloxone hydrochloride was quantified using high-performance liquid chromatography (HPLC). Naloxone hydrochloride ampoules stored at room temperature served as the experimental control. Results Naloxone hydrochloride ampoules exhibit no changes in drug concentration following exposure to heat or freeze-thaw cycles for up to 28 days compared to ampoules maintained at room temperature (as indicated in the product monograph). Conclusions Naloxone hydrochloride remains chemically stable following exposure to heat or freeze-thaw cycles after 28 days. If THN kits are stored in non-standard conditions (for up to 28 days) the active naloxone is likely to remain stable. Despite this, pharmacists should continue to emphasize the importance of appropriate storage of THN kits to ensure optimal efficacy should naloxone administration be required in an emergency situation.
Keywords