npj Precision Oncology (Sep 2023)

Efficient diagnosis of IDH-mutant gliomas: 1p/19qNET assesses 1p/19q codeletion status using weakly-supervised learning

  • Gi Jeong Kim,
  • Tonghyun Lee,
  • Sangjeong Ahn,
  • Youngjung Uh,
  • Se Hoon Kim

DOI
https://doi.org/10.1038/s41698-023-00450-4
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Accurate identification of molecular alterations in gliomas is crucial for their diagnosis and treatment. Although, fluorescence in situ hybridization (FISH) allows for the observation of diverse and heterogeneous alterations, it is inherently time-consuming and challenging due to the limitations of the molecular method. Here, we report the development of 1p/19qNET, an advanced deep-learning network designed to predict fold change values of 1p and 19q chromosomes and classify isocitrate dehydrogenase (IDH)-mutant gliomas from whole-slide images. We trained 1p/19qNET on next-generation sequencing data from a discovery set (DS) of 288 patients and utilized a weakly-supervised approach with slide-level labels to reduce bias and workload. We then performed validation on an independent validation set (IVS) comprising 385 samples from The Cancer Genome Atlas, a comprehensive cancer genomics resource. 1p/19qNET outperformed traditional FISH, achieving R 2 values of 0.589 and 0.547 for the 1p and 19q arms, respectively. As an IDH-mutant glioma classifier, 1p/19qNET attained AUCs of 0.930 and 0.837 in the DS and IVS, respectively. The weakly-supervised nature of 1p/19qNET provides explainable heatmaps for the results. This study demonstrates the successful use of deep learning for precise determination of 1p/19q codeletion status and classification of IDH-mutant gliomas as astrocytoma or oligodendroglioma. 1p/19qNET offers comparable results to FISH and provides informative spatial information. This approach has broader applications in tumor classification.