Advances in Electrical and Computer Engineering (May 2016)
Stochastic Wheel-Slip Compensation Based Robot Localization and Mapping
Abstract
Wheel slip compensation is vital for building accurate and reliable dead reckoning based robot localization and mapping algorithms. This investigation presents stochastic slip compensation scheme for robot localization and mapping. Main idea of the slip compensation technique is to use wheel-slip data obtained from experiments to model the variations in slip velocity as Gaussian distributions. This leads to a family of models that are switched depending on the input command. To obtain the wheel-slip measurements, experiments are conducted on a wheeled mobile robot and the measurements thus obtained are used to build the Gaussian models. Then the localization and mapping algorithm is tested on an experimental terrain and a new metric called the map spread factor is used to evaluate the ability of the slip compensation technique. Our results clearly indicate that the proposed methodology improves the accuracy by 72.55% for rotation and 66.67% for translation motion as against an uncompensated mapping system. The proposed compensation technique eliminates the need for extro receptive sensors for slip compensation, complex feature extraction and association algorithms. As a result, we obtain a simple slip compensation scheme for localization and mapping.
Keywords