Metals (Jul 2021)
Differences in Deformation Behaviors Caused by Microband-Induced Plasticity of [0 0 1]- and [1 1 1]-Oriented Austenite Micro-Pillars
Abstract
A uniaxial compression test and scanning/transmission electron microscopy observations were performed to investigate the differences in mechanical behavior and deformed microstructure between focused ion beam-manufactured [1 1 1]- and [0 0 1]-oriented austenite micro-pillars with 5 μm diameter from duplex stainless steel. After yielding, the strain hardening of two orientation micro-pillars increased sharply as a result of the formation of a microband, namely microband-induced plasticity, MBIP. The same phenomenon could be observed in a [0 0 1]-oriented pillar due to the activation of the secondary slip system, while slight strain hardening behavior was observed in the [1 1 1] orientation because of the refinement of the microband. Furthermore, the trend of the calculated strain hardening rates of both [1 1 1]- and [0 0 1]-oriented micro-pillars were in good agreement with the experimental data. This study proved that MBIP can be helpful for the mechanical property enhancement of steels.
Keywords