BMC Medical Research Methodology (May 2022)
Assessing the impact of including variation in general population mortality on standard errors of relative survival and loss in life expectancy
Abstract
Abstract Background A relative survival approach is often used in population-based cancer studies, where other cause (or expected) mortality is assumed to be the same as the mortality in the general population, given a specific covariate pattern. The population mortality is assumed to be known (fixed), i.e. measured without uncertainty. This could have implications for the estimated standard errors (SE) of any measures obtained within a relative survival framework, such as relative survival (RS) ratios and the loss in life expectancy (LLE). We evaluated the existing approach to estimate SE of RS and the LLE in comparison to if uncertainty in the population mortality was taken into account. Methods The uncertainty from the population mortality was incorporated using parametric bootstrap approach. The analysis was performed with different levels of stratification and sizes of the general population used for creating expected mortality rates. Using these expected mortality rates, SEs of 5-year RS and the LLE for colon cancer patients in Sweden were estimated. Results Ignoring uncertainty in the general population mortality rates had negligible (less than 1%) impact on the SEs of 5-year RS and LLE, when the expected mortality rates were based on the whole general population, i.e. all people living in a country or region. However, the smaller population used for creating the expected mortality rates, the larger impact. For a general population reduced to 0.05% of the original size and stratified by age, sex, year and region, the relative precision for 5-year RS was 41% for males diagnosed at age 85. For the LLE the impact was more substantial with a relative precision of 1286%. The relative precision for marginal estimates of 5-year RS was 3% and 30% and for the LLE 22% and 313% when the general population was reduced to 0.5% and 0.05% of the original size, respectively. Conclusions When the general population mortality rates are based on the whole population, the uncertainty in the estimates of the expected measures can be ignored. However, when based on a smaller population, this uncertainty should be taken into account, otherwise SEs may be too small, particularly for marginal values, and, therefore, confidence intervals too narrow.
Keywords