Intensive Care Medicine Experimental (Jun 2021)
Risk factors for adverse outcomes during mechanical ventilation of 1152 COVID-19 patients: a multicenter machine learning study with highly granular data from the Dutch Data Warehouse
- Lucas M. Fleuren,
- Michele Tonutti,
- Daan P. de Bruin,
- Robbert C. A. Lalisang,
- Tariq A. Dam,
- Diederik Gommers,
- Olaf L. Cremer,
- Rob J. Bosman,
- Sebastiaan J. J. Vonk,
- Mattia Fornasa,
- Tomas Machado,
- Nardo J. M. van der Meer,
- Sander Rigter,
- Evert-Jan Wils,
- Tim Frenzel,
- Dave A. Dongelmans,
- Remko de Jong,
- Marco Peters,
- Marlijn J. A. Kamps,
- Dharmanand Ramnarain,
- Ralph Nowitzky,
- Fleur G. C. A. Nooteboom,
- Wouter de Ruijter,
- Louise C. Urlings-Strop,
- Ellen G. M. Smit,
- D. Jannet Mehagnoul-Schipper,
- Tom Dormans,
- Cornelis P. C. de Jager,
- Stefaan H. A. Hendriks,
- Evelien Oostdijk,
- Auke C. Reidinga,
- Barbara Festen-Spanjer,
- Gert Brunnekreef,
- Alexander D. Cornet,
- Walter van den Tempel,
- Age D. Boelens,
- Peter Koetsier,
- Judith Lens,
- Sefanja Achterberg,
- Harald J. Faber,
- A. Karakus,
- Menno Beukema,
- Robert Entjes,
- Paul de Jong,
- Taco Houwert,
- Hidde Hovenkamp,
- Roberto Noorduijn Londono,
- Davide Quintarelli,
- Martijn G. Scholtemeijer,
- Aletta A. de Beer,
- Giovanni Cinà,
- Martijn Beudel,
- Nicolet F. de Keizer,
- Mark Hoogendoorn,
- Armand R. J. Girbes,
- Willem E. Herter,
- Paul W. G. Elbers,
- Patrick J. Thoral,
- Dutch ICU Data Sharing Against COVID-19 Collaborators
Affiliations
- Lucas M. Fleuren
- Department of Intensive Care Medicine, Amsterdam UMC
- Michele Tonutti
- Pacmed
- Daan P. de Bruin
- Pacmed
- Robbert C. A. Lalisang
- Pacmed
- Tariq A. Dam
- Department of Intensive Care Medicine, Amsterdam UMC
- Diederik Gommers
- Department of Intensive Care, Erasmus Medical Center
- Olaf L. Cremer
- Intensive Care, UMC Utrecht
- Rob J. Bosman
- ICU, OLVG
- Sebastiaan J. J. Vonk
- Pacmed
- Mattia Fornasa
- Pacmed
- Tomas Machado
- Pacmed
- Nardo J. M. van der Meer
- Intensive Care, Amphia Ziekenhuis
- Sander Rigter
- Department of Anesthesiology and Intensive Care, St. Antonius Hospital
- Evert-Jan Wils
- Department of Intensive Care, Franciscus Gasthuis & Vlietland
- Tim Frenzel
- Department of Intensive Care Medicine, Radboud University Medical Center
- Dave A. Dongelmans
- Department of Intensive Care Medicine, Amsterdam UMC
- Remko de Jong
- Intensive Care, Bovenij Ziekenhuis
- Marco Peters
- Intensive Care, Canisius Wilhelmina Ziekenhuis
- Marlijn J. A. Kamps
- Intensive Care, Catharina Ziekenhuis Eindhoven
- Dharmanand Ramnarain
- Intensive Care, ETZ Tilburg
- Ralph Nowitzky
- Intensive Care, Haga Ziekenhuis
- Fleur G. C. A. Nooteboom
- Intensive Care, Laurentius Ziekenhuis
- Wouter de Ruijter
- Intensive Care, Noordwest Ziekenhuisgroep
- Louise C. Urlings-Strop
- Intensive Care, Reinier de Graaf Gasthuis
- Ellen G. M. Smit
- Intensive Care, Spaarne Gasthuis
- D. Jannet Mehagnoul-Schipper
- Intensive Care, VieCuri Medisch Centrum
- Tom Dormans
- Intensive Care, Zuyderland MC
- Cornelis P. C. de Jager
- Department of Intensive Care, Jeroen Bosch Ziekenhuis
- Stefaan H. A. Hendriks
- Intensive Care, Albert Schweitzerziekenhuis
- Evelien Oostdijk
- ICU, Maasstad Ziekenhuis Rotterdam
- Auke C. Reidinga
- ICU, SEH, BWC, Martiniziekenhuis
- Barbara Festen-Spanjer
- Intensive Care, Ziekenhuis Gelderse Vallei
- Gert Brunnekreef
- Department of Intensive Care, Ziekenhuisgroep Twente
- Alexander D. Cornet
- Department of Intensive Care, Medisch Spectrum Twente
- Walter van den Tempel
- Department of Intensive Care, Ikazia Ziekenhuis Rotterdam
- Age D. Boelens
- Anesthesiology, Antonius Ziekenhuis Sneek
- Peter Koetsier
- Intensive Care, Medisch Centrum Leeuwarden
- Judith Lens
- ICU, IJsselland Ziekenhuis
- Sefanja Achterberg
- ICU, Haaglanden Medisch Centrum
- Harald J. Faber
- ICU, WZA
- A. Karakus
- Department of Intensive Care, Diakonessenhuis Hospital
- Menno Beukema
- Department of Intensive Care, Streekziekenhuis Koningin Beatrix
- Robert Entjes
- Department of Intensive Care, Admiraal De Ruyter Ziekenhuis
- Paul de Jong
- Department of Anesthesia and Intensive Care, Slingeland Ziekenhuis
- Taco Houwert
- Pacmed
- Hidde Hovenkamp
- Pacmed
- Roberto Noorduijn Londono
- Pacmed
- Davide Quintarelli
- Pacmed
- Martijn G. Scholtemeijer
- Pacmed
- Aletta A. de Beer
- Pacmed
- Giovanni Cinà
- Pacmed
- Martijn Beudel
- Department of Neurology, Amsterdam UMC, Universiteit Van Amsterdam
- Nicolet F. de Keizer
- Department of Clinical Informatics, Amsterdam UMC
- Mark Hoogendoorn
- Quantitative Data Analytics Group, Department of Computer Science, Faculty of Science, VU University
- Armand R. J. Girbes
- Department of Intensive Care Medicine, Amsterdam UMC
- Willem E. Herter
- Pacmed
- Paul W. G. Elbers
- Department of Intensive Care Medicine, Amsterdam UMC
- Patrick J. Thoral
- Department of Intensive Care Medicine, Amsterdam UMC
- Dutch ICU Data Sharing Against COVID-19 Collaborators
- DOI
- https://doi.org/10.1186/s40635-021-00397-5
- Journal volume & issue
-
Vol. 9,
no. 1
pp. 1 – 15
Abstract
Abstract Background The identification of risk factors for adverse outcomes and prolonged intensive care unit (ICU) stay in COVID-19 patients is essential for prognostication, determining treatment intensity, and resource allocation. Previous studies have determined risk factors on admission only, and included a limited number of predictors. Therefore, using data from the highly granular and multicenter Dutch Data Warehouse, we developed machine learning models to identify risk factors for ICU mortality, ventilator-free days and ICU-free days during the course of invasive mechanical ventilation (IMV) in COVID-19 patients. Methods The DDW is a growing electronic health record database of critically ill COVID-19 patients in the Netherlands. All adult ICU patients on IMV were eligible for inclusion. Transfers, patients admitted for less than 24 h, and patients still admitted at time of data extraction were excluded. Predictors were selected based on the literature, and included medication dosage and fluid balance. Multiple algorithms were trained and validated on up to three sets of observations per patient on day 1, 7, and 14 using fivefold nested cross-validation, keeping observations from an individual patient in the same split. Results A total of 1152 patients were included in the model. XGBoost models performed best for all outcomes and were used to calculate predictor importance. Using Shapley additive explanations (SHAP), age was the most important demographic risk factor for the outcomes upon start of IMV and throughout its course. The relative probability of death across age values is visualized in Partial Dependence Plots (PDPs), with an increase starting at 54 years. Besides age, acidaemia, low P/F-ratios and high driving pressures demonstrated a higher probability of death. The PDP for driving pressure showed a relative probability increase starting at 12 cmH2O. Conclusion Age is the most important demographic risk factor of ICU mortality, ICU-free days and ventilator-free days throughout the course of invasive mechanical ventilation in critically ill COVID-19 patients. pH, P/F ratio, and driving pressure should be monitored closely over the course of mechanical ventilation as risk factors predictive of these outcomes.
Keywords