Nano Biomedicine and Engineering (Mar 2023)

Evaluation of Anti-diabetic Potential of Anti-microbial Carbon Quantum Dots from Vitis vinifera Seeds

  • C. R. Parvathy,
  • P. K. Praseetha

DOI
https://doi.org/10.26599/NBE.2023.9290002
Journal volume & issue
Vol. 15, no. 1
pp. 28 – 35

Abstract

Read online

Carbon quantum dots (CQDs) have a size of 10 nm (or less), with lots of biomedical advantages, creating huge excitement in different research fields. The aim of this study includes an eco-friendly synthesis of biogenic CQDs from grape (Vitis vinifera) seeds, identifying the characteristics and assessing its anti-diabetic as well as anti-microbial activity. CQDs are prepared by the pyrolysis method. Synthesized CQDs were confirmed by ultraviolet (UV)–visible (Vis) spectrophotometer, and the characterization study was done by X-ray diffractometer, photoluminescence spectroscopy, Fourier transform infra-red spectroscopy, and transmission electron microscopy with selected area electron diffraction (SAED). Anti-diabetic activity of CQDs was analyzed by in vitro α-glycosidase, α-amylase inhibition assays, and glucose uptake studies. The anti-bacterial activity of CQDs was analyzed by anti-microbial assay technique against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus mutans. The results showed that the CQDs synthesized from a natural source like grape seeds, were amorphous in nature, the average particle size was 4 nm, and they contain functional groups like carboxyl and hydroxyl. Subsequently, it showed that the sp2 domains also produce green fluorescence. The anti-diabetic experimental method revealed that the CQDs enhance glucose uptake and inhibit carbohydrate hydrolyzing enzymes. CQDs also exhibit anti-bacterial properties against both Gram-positive and Gram-negative bacteria, according to their antimicrobial impact. Due to their small size and higher activity, CQDs will become strong anti-diabetic agents as well as anti-bacterial ones.

Keywords