Journal of Manufacturing and Materials Processing (Sep 2023)

Effect of Process Variables on Interface Friction Characteristics in Strip Drawing of AA 5182 Alloy and Its Formability in Warm Deep Drawing

  • Archit Shrivastava,
  • Ravi Kumar Digavalli

DOI
https://doi.org/10.3390/jmmp7050175
Journal volume & issue
Vol. 7, no. 5
p. 175

Abstract

Read online

Warm forming is widely used to enhance the formability of aluminum alloy sheets. In warm deep drawing, the process variables significantly affect frictional characteristics at the tool–blank interface. It has been a conventional approach to use a constant value of friction coefficients in the finite element (FE) simulations. However, this can occasionally result in suboptimal accuracy of the predictions. In the present work, strip drawing tests were carried out on AA5182 aluminum alloy sheets to investigate the effect of important process variables, namely, temperature, contact pressure, and drawing speed, on the friction coefficient in the warm forming temperature range (100–250 °C) under lubricated condition. The results obtained from the strip drawing tests were used for defining the friction conditions in the simulation of warm deep drawing of cylindrical cups incorporating the variation of the friction coefficient with contact pressure and speed at different temperatures. The Barlat89 yield criterion was used to define the effect of anisotropy in the material. The Voce hardening law and Cowper–Symonds model were used to incorporate the effect of strain hardening and strain rate, respectively, in the simulation. Drawability and peak force were compared with the predictions when a constant friction coefficient was assumed. Warm deep drawing experiments were conducted to validate the predicted drawability and load–displacement curves. It is clearly observed that the accuracy of prediction of the limiting drawing ratio and peak load through simulations is improved by incorporating the effect of pressure and speed on friction coefficient as it captures the local variations of friction during warm deep drawing precisely, rather than assuming a constant average friction coefficient at all the tool–blank contact areas.

Keywords