FASEB BioAdvances (Jul 2023)

Bilateral transcranial direct‐current stimulation promotes migration of subventricular zone‐derived neuroblasts toward ischemic brain

  • Ruixue Lei,
  • Shu Wang,
  • Anchun Liu,
  • Jing Cheng,
  • Zhifeng Zhang,
  • Jinyang Ren,
  • Xujin Yao,
  • Xiangyi Kong,
  • Wenlong Ma,
  • Fengyuan Che,
  • Juan Chen,
  • Qi Wan

DOI
https://doi.org/10.1096/fba.2023-00017
Journal volume & issue
Vol. 5, no. 7
pp. 277 – 286

Abstract

Read online

Abstract Ischemic insult stimulates proliferation of neural stem cells (NSCs) in the subventricular zone (SVZ) after stroke. However, only a fraction of NSC‐derived neuroblasts from SVZ migrate toward poststroke brain region. We have previously reported that direct‐current stimulation guides NSC migration toward the cathode in vitro. Accordingly, we set up a new method of transcranial direct‐current stimulation (tDCS), in which the cathodal electrode is placed on the ischemic hemisphere and anodal electrode on the contralateral hemisphere of rats subjected to ischemia–reperfusion injury. We show that the application of this bilateral tDCS (BtDCS) promotes the migration of NSC‐derived neuroblasts from SVZ toward the cathode direction into poststroke striatum. Reversing the position of the electrodes blocks the effect of BtDCS on the migration of neuroblasts from SVZ. BtDCS protects against neuronal death and improves the functional recovery of stroke animals. Thus, the migration of NSC‐derived neuroblasts from SVZ toward poststroke brain region contributes to the effect of BtDCS against ischemia‐induced neuronal death, supporting a potential development of noninvasive BtDCS as an endogenous neurogenesis‐based stroke therapy.

Keywords