BMC Infectious Diseases (Sep 2023)
Tracking the geographical origin of Plasmodium falciparum causing a rare severe case of malaria imported into Palestine, a zero-indigenous case area
Abstract
Abstract Background Malaria cases in non-endemic zero-indigenous case areas are most likely to have been imported whatever of the route of importation. In countries recently declared malaria-free and now without local transmission, imported cases remain a threat to re-introduction of the disease and a burden on the health system. Case presentation Three days after returning from a long trip to malaria- endemic countries; Abyei-Sudan, Chad and Uganda, a 41-year-old male resident from Jericho, Palestine, suffered paroxysms of fever, general fatigue, myalgia, arthralgia, headache, and a strong desire to vomit. Thin and thick Giemsa-stained blood smears were prepared and examined microscopically using oil immersion. Immature trophozoites (ring forms) were seen to parasitize approximately 10% of the erythrocytes revealing hyperparasitemia equivalent to > 100,000 parasites/ µl indicating severe malaria [1, 2]. The double chromatin configuration (headphones) and accolé (applique) position are both indicative of Plasmodium falciparum infection. The 18S rRNA- PCR targeting the rPLU6-rPLU5 region was used to confirm the diagnosis. The next-generation sequencing (NGS) method was carried out according to the manufacturer’s instructions (Illumina® DNA Prep, (M) Tagmentation kit (20060060), Illumina) to identify Plasmodium spp. Furthermore, NGS produced a whole-genome sequence of 22.8Mbp of the 14 chromosomes and 25Kbp of the apicoplast. A BLAST search of the apicoplast DNA and selected chromosomal DNA revealed that P. falciparum was the causative agent. The merozoite surface protein-1 (msp-1) was used to construct a phylogenetic tree of 26 P. falciparum, including the one isolated from the patient from Jericho, which clustered with the Sudanese isolate indicating genetic relatedness between the two. Conclusion The travel history together with signs and symptoms of malaria, followed by prompt diagnosis using conventional microscopic inspection of Giemsa-stained films together with molecular DNA tracking tools like msp-1 were key means in tracking the place of origin of infection in the case of travel to multiple destination.
Keywords