Physical Review X (Oct 2015)

Electronic Structure Evolution across the Peierls Metal-Insulator Transition in a Correlated Ferromagnet

  • P. A. Bhobe,
  • A. Kumar,
  • M. Taguchi,
  • R. Eguchi,
  • M. Matsunami,
  • Y. Takata,
  • A. K. Nandy,
  • P. Mahadevan,
  • D. D. Sarma,
  • A. Neroni,
  • E. Şaşıoğlu,
  • M. Ležaić,
  • M. Oura,
  • Y. Senba,
  • H. Ohashi,
  • K. Ishizaka,
  • M. Okawa,
  • S. Shin,
  • K. Tamasaku,
  • Y. Kohmura,
  • M. Yabashi,
  • T. Ishikawa,
  • K. Hasegawa,
  • M. Isobe,
  • Y. Ueda,
  • A. Chainani

DOI
https://doi.org/10.1103/PhysRevX.5.041004
Journal volume & issue
Vol. 5, no. 4
p. 041004

Abstract

Read online Read online

Transition metal compounds often undergo spin-charge-orbital ordering due to strong electron-electron correlations. In contrast, low-dimensional materials can exhibit a Peierls transition arising from low-energy electron-phonon-coupling-induced structural instabilities. We study the electronic structure of the tunnel framework compound K_{2}Cr_{8}O_{16}, which exhibits a temperature-dependent (T-dependent) paramagnetic-to-ferromagnetic-metal transition at T_{C}=180 K and transforms into a ferromagnetic insulator below T_{MI}=95 K. We observe clear T-dependent dynamic valence (charge) fluctuations from above T_{C} to T_{MI}, which effectively get pinned to an average nominal valence of Cr^{+3.75} (Cr^{4+}∶Cr^{3+} states in a 3∶1 ratio) in the ferromagnetic-insulating phase. High-resolution laser photoemission shows a T-dependent BCS-type energy gap, with 2G(0)∼3.5(k_{B}T_{MI})∼35 meV. First-principles band-structure calculations, using the experimentally estimated on-site Coulomb energy of U∼4 eV, establish the necessity of strong correlations and finite structural distortions for driving the metal-insulator transition. In spite of the strong correlations, the nonintegral occupancy (2.25 d-electrons/Cr) and the half-metallic ferromagnetism in the t_{2g} up-spin band favor a low-energy Peierls metal-insulator transition.