PLoS ONE (Jan 2011)

Predicted impact of barriers to migration on the Serengeti wildebeest population.

  • Ricardo M Holdo,
  • John M Fryxell,
  • Anthony R E Sinclair,
  • Andrew Dobson,
  • Robert D Holt

DOI
https://doi.org/10.1371/journal.pone.0016370
Journal volume & issue
Vol. 6, no. 1
p. e16370

Abstract

Read online

The Serengeti wildebeest migration is a rare and spectacular example of a once-common biological phenomenon. A proposed road project threatens to bisect the Serengeti ecosystem and its integrity. The precautionary principle dictates that we consider the possible consequences of a road completely disrupting the migration. We used an existing spatially-explicit simulation model of wildebeest movement and population dynamics to explore how placing a barrier to migration across the proposed route (thus creating two disjoint but mobile subpopulations) might affect the long-term size of the wildebeest population. Our simulation results suggest that a barrier to migration--even without causing habitat loss--could cause the wildebeest population to decline by about a third. The driver of this decline is the effect of habitat fragmentation (even without habitat loss) on the ability of wildebeest to effectively track temporal shifts in high-quality forage resources across the landscape. Given the important role of the wildebeest migration for a number of key ecological processes, these findings have potentially important ramifications for ecosystem biodiversity, structure, and function in the Serengeti.