Atmosphere (May 2019)

Mesoscopic Urban-Traffic Simulation Based on Mobility Behavior to Calculate NOx Emissions Caused by Private Motorized Transport

  • Simon Plakolb,
  • Georg Jäger,
  • Christian Hofer,
  • Manfred Füllsack

DOI
https://doi.org/10.3390/atmos10060293
Journal volume & issue
Vol. 10, no. 6
p. 293

Abstract

Read online

Motorized transport is one of the main contributors to anthropogenic CO 2 emissions, which cause global warming. Other emissions, like nitrogen oxides or carbon monoxide, are detrimental to human health. A prominent way to understand and thus be able to minimize emissions is by using traffic simulations to evaluate different scenarios. In that way, one can find out which policies, technical innovations, or behavioral changes can lead to a decrease in emissions. Since the effect of CO 2 is on a global scale, a macroscopic model is often enough to find reasonable results. However, NO x emissions can also have a direct, local effect. Therefore, it is interesting to investigate these emissions on a mesoscopic scale, to gain insight into the local distribution of this pollutant. In this study, we used a traffic model that, contrary to most other state-of-the-art traffic simulations, does not require an origin−destination matrix as an input, but calculates it from mobility behavior extracted from a survey. We then generated agents with realistic mobility behavior that perform their daily trips and calculate key features like congestion and emissions for every edge of the road network. Our approach has the additional advantage of allowing to investigate technical, juridical, as well as behavioral changes, all within the same framework. It is then possible to identify strategies that minimize NO x emissions caused by private motorized transport. Evaluation showed good agreement with reality in terms of local and temporal resolution. Especially when looking at the sum of emissions, the main feature for evaluating policies, and deviations between our simulation and available statistics were negligible. We found that, from all scenarios we investigated, the ban of old diesel cars is the most promising policy: By replacing all diesel cars built in 2005 or earlier with petrol cars of the same age, NO x emissions could drop by roughly a third.

Keywords