Remote Sensing (Mar 2012)
Segmentation of Shadowed Buildings in Dense Urban Areas from Aerial Photographs
Abstract
Segmentation of buildings in urban areas, especially dense urban areas, by using remotely sensed images is highly desirable. However, segmentation results obtained by using existing algorithms are unsatisfactory because of the unclear boundaries between buildings and the shadows cast by neighboring buildings. In this paper, an algorithm is proposed that successfully segments buildings from aerial photographs, including shadowed buildings in dense urban areas. To handle roofs having rough textures, digital numbers (DNs) are quantized into several quantum values. Quantization using several interval widths is applied during segmentation, and for each quantization, areas with homogeneous values are labeled in an image. Edges determined from the homogeneous areas obtained at each quantization are then merged, and frequently observed edges are extracted. By using a “rectangular index”, regions whose shapes are close to being rectangular are thus selected as buildings. Experimental results show that the proposed algorithm generates more practical segmentation results than an existing algorithm does. Therefore, the main factors in successful segmentation of shadowed roofs are (1) combination of different quantization results, (2) selection of buildings according to the rectangular index, and (3) edge completion by the inclusion of non-edge pixels that have a high probability of being edges. By utilizing these factors, the proposed algorithm optimizes the spatial filtering scale with respect to the size of building roofs in a locality. The proposed algorithm is considered to be useful for conducting building segmentation for various purposes.
Keywords