Plants (Jan 2023)

Structural Refinement by Direct Mapping Reveals Assembly Inconsistencies near Hi-C Junctions

  • Luca Marcolungo,
  • Leonardo Vincenzi,
  • Matteo Ballottari,
  • Michela Cecchin,
  • Emanuela Cosentino,
  • Thomas Mignani,
  • Antonina Limongi,
  • Irene Ferraris,
  • Matteo Orlandi,
  • Marzia Rossato,
  • Massimo Delledonne

DOI
https://doi.org/10.3390/plants12020320
Journal volume & issue
Vol. 12, no. 2
p. 320

Abstract

Read online

High-throughput chromosome conformation capture (Hi-C) is widely used for scaffolding in de novo assembly because it produces highly contiguous genomes, but its indirect statistical approach can introduce connection errors. We employed optical mapping (Bionano Genomics) as an orthogonal scaffolding technology to assess the structural solidity of Hi-C reconstructed scaffolds. Optical maps were used to assess the correctness of five de novo genome assemblies based on long-read sequencing for contig generation and Hi-C for scaffolding. Hundreds of inconsistencies were found between the reconstructions generated using the Hi-C and optical mapping approaches. Manual inspection, exploiting raw long-read sequencing data and optical maps, confirmed that several of these conflicts were derived from Hi-C joining errors. Such misjoins were widespread, involved the connection of both small and large contigs, and even overlapped annotated genes. We conclude that the integration of optical mapping data after, not before, Hi-C-based scaffolding, improves the quality of the assembly and limits reconstruction errors by highlighting misjoins that can then be subjected to further investigation.

Keywords